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Improvements in the ability to model El Niño and other large-scale
interannual climate variations have allowed for the development
of seasonal climate forecasts, predicting rainfall and temperature
anomalies for many places around the world. These forecasts have
allowed developing countries to predict shortfalls in grain yields,
with benefits for food security. Several countries communicate the
forecasts to subsistence farmers, which could allow them to mit-
igate the effects of drought on their harvests by adapting their
cropping decisions accordingly. However, it has not been demon-
strated that subsistence farmers benefit from having access to the
forecasts. Here we present evidence of subsistence farmers using
the forecasts over multiple years to make different decisions and
significantly improving their harvests when they do so. In a
controlled study, farmers in Zimbabwe who reported adapting
their farming methods to seasonal climate forecasts significantly
improved their harvests over baseline amounts. Moreover, farmers
who had attended a brief workshop and learned more about the
forecasts were significantly more likely to use the forecasts than
were farmers who learned of the forecasts through nonparticipa-
tory channels.

climate change � climate forecasting � sustainable development

Among the many effects associated with the El Niño�
Southern Oscillation (ENSO) cycle, researchers have iden-

tified a correlation between ENSO warm events and dry con-
ditions during the summer growing season in Zimbabwe, where
�60% of the variance of maize yields is explained by sea surface
temperatures in the eastern equatorial Pacific (1). ENSO fore-
casts, used to generate national-scale seasonal forecasts of
rainfall anomalies, could have economic value to the Zimba-
bwean agricultural sector if farmers have the opportunity to
adapt to expected climatic conditions by planting different crop
varieties and changing other management decisions in response
to the information (2). Here we show that subsistence farmers in
Zimbabwe have used and benefited from seasonal forecasts,
especially when participatory communication practices were
established to overcome farmers’ difficulty in understanding and
applying the information. However, use of the forecast infor-
mation goes only a small way toward overcoming the challenges
farmers face to maintain subsistence levels of production.

Researchers have suggested that seasonal climate forecasts,
based on ENSO predictions, could have significant positive
benefits for food security (3, 4). Moreover, seasonal climate
forecast communication is but one example of a major identified
challenge for sustainable development and poverty reduction,
namely the application of locally specific scientific information
to help people make better livelihood choices (5). Using infor-
mation to adapt to anticipated changes is an important step that
communities can take to become less vulnerable to global change
(6, 7).

The first major success in climate forecast application oc-
curred in 1992, when the Brazilian state of Ceará warned farmers
of an impending El Niño and supplied them with free drought-

tolerant seeds, resulting in a dramatic increase in their yields over
what they would have otherwise received (8). Several national
and international meteorological organizations have since de-
veloped processes for ensuring that seasonal climate forecasts
would be communicated to national-level decision makers (9–
11). National-level policy makers in the disaster relief and water
management sectors have been shown to gain value from the
forecasts, as have large-scale commercial farmers (12, 13).

Crop models have demonstrated the potential economic value
of the forecasts to subsistence farmers as well (2, 14), and several
countries communicate the forecasts to them (15). In one such
country, Zimbabwe, farmers altered crop management decisions
during the 1997–1998 El Niño and the 1998–1999 La Niña, even
when faced with severe resource constraints (16). The latter
study analyzed farmers’ reported decisions in response to pre-
dictions of drought (1997–1998) and wetter conditions (1998–
1999) and concluded that the value of forecast use may be at least
as high in normal to wet years as in dry years, because farmers
appeared to take advantage of a good forecast to plant a greater
proportion of less drought-tolerant but much higher-yielding
long-season maize. The study did not, however, measure the
effects of different management decisions made in response to
the forecasts.

Despite these studies showing a willingness to change deci-
sions, actual benefits of seasonal precipitation forecasts to
individual resource-constrained subsistence farmers have yet to
be demonstrated. Indeed, there is little evidence that the use of
forecasts alone, without a concomitant distribution of seed, leads
to improved harvests (12, 17). In Brazil, where drought-tolerant
seed was distributed during the 1991–1992 El Niño, early success
was soon followed by a forecast that many users considered to
have been in error, resulting in decreased reliance on the forecast
in subsequent years (18, 19). In Zimbabwe during the 1997
ENSO warm event, one of the responses to the media’s exag-
gerated forecast was a reduction in the crop area planted, both
as farmers chose to purchase less seed and as restricted credit
narrowed their options; reliance on the forecast led to a de-
crease, rather than an increase, in yields (20), and many people
criticized the forecasts (21, 22).

Empirical study has identified several roadblocks to using the
forecasts. For example, farmers often still hear of the forecasts
after they have made their planting decisions, and say they
neither understand nor trust the information (23). An important
factor limiting both the use of forecasts to make different
decisions and the likelihood that those decisions will be appro-
priate appears to be the method by which forecasts are commu-
nicated (22). Several studies suggest the need to develop, over
many years, a forecast communication system that involves the
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active participation of the farmers themselves, and in so doing,
to build the salience, credibility, and legitimacy of the forecasts
(12, 24, 25).

To justify the continued flow of resources to develop and
communicate forecasts to subsistence farmers, then, it would be
helpful to answer two empirical questions. First, do farmers who
use the information to make different decisions actually benefit
from having done so? Second, are subsistence farmers who have
access to a sustained participatory forecast communication
process more likely to use the information than those who hear
it through less interactive channels? Answering such questions
has been made difficult by a set of methodological challenges
associated with obtaining reliable data (26).

Methods
We carried out a pilot study in Zimbabwe to answer these two
questions. We located the study in Zimbabwe because its climate
is strongly influenced by El Niño (1), because the government is
actively developing seasonal rainfall forecasts to be useful for
subsistence farmers (15), and because these farmers face signif-
icant resource constraints typical for subSaharan Africa (27). We
selected four villages as our study sites, representing a cross
section of Zimbabwean growing conditions (Fig. 1). Tiya has a
population of �1,000 and receives an average annual rainfall of
�900 mm. Farmers here typically plant a mixture of medium-
and long-season maize varieties for their staple crop. Mhakwe
has a population of �2,500 and receives an average annual
rainfall of �650 mm. Farmers here typically plant medium-
season maize. Mafa has a population of �1,000 and receives an
average annual rainfall of �550 mm. Mkoka has a population of
�5,800 people and receives an average annual rainfall of �450
mm. Farmers in both Mafa and Mkoka plant a mixture of
short-season maize, sorghum, and millet as their staple crops.

These communities, as with all of Zimbabwe, already have
access to the seasonal rainfall forecasts developed at the annual
Southern African Regional Climate Outlook Forum (SARCOF).
The SARCOF forecasts are downscaled, interpreted, and dis-
seminated by the Zimbabwe Department of Meteorological

Services, with radio being the most common medium for people
to learn of them. The forecasts contain rainfall estimates for the
early (October–December, OND) and late (January–March,
JFM) parts of the growing season, in the form of probabilities for
rainfall totals falling in the ranges of below normal (a range
defined by the 10 driest of the past 30 seasons), normal, or above
normal (a range defined by the 10 wettest of the past 30 seasons).

Beginning in September 2000, we held a series of annual
participatory climate forecast workshops in each village, de-
signed to assist a group of �50 farmers in each village to better
understand the forecast and to be able to apply it to their farm
management decisions. In Mhakwe and Tiya, the agricultural
extension service officer living in the village personally invited
each workshop participant. In Mafa, the headmaster of the
village primary school invited participants, whereas in Mkoka,
the village chief invited participants. We asked these local
coordinators to invite a random sample of farmers, based on
census data, with the constraint of inviting equal numbers of men
and women. In subsequent years, the local coordinator randomly
invited half of the participants from the previous year’s work-
shop and a new random sample of men and women, again based
on census data, to fill out the remaining places. The workshops
took place in the village primary school, lasted �3 hours, and
were conducted in the local language, with many parts translated
from English. We videotaped each workshop to obtain a tran-
script of farmers’ questions and comments.

The workshops followed a common format, designed to assist
farmers in applying the forecast information yet short enough to
be a model for a more widespread communication strategy. First,
we asked farmers to comment on the previous season’s rainfall,
and whether it agreed with their recollection of the forecast.
Second, we asked farmers to comment on the success of their
management practices in the past year, given the rainfall that
occurred. Third, we asked farmers to offer their insights into the
coming year’s rainfall, based on their interpretation of local
traditional rainfall indicators. Fourth, we explained to farmers
the forecast for the coming season, in terms of the probabilities
for below-, about-, and above-normal rainfall. Fifth, we down-
scaled that forecast, using farmers’ own historical data for local
rainfall quantities, to estimate likelihoods for ranges of actual
rainfall. Sixth, we explained in simple terms and invited ques-
tions about the information used to generate the forecast,
including a discussion of El Niño. Seventh, we facilitated a
discussion between farmers and the local agricultural extension
service officer on the appropriate farm management practices
for the coming year, taking into account the forecast, the local
indicators, and seed availability.

In May of 2003 and 2004 we surveyed both workshop partic-
ipants and nonparticipants in each of the four communities
about farming decisions, yields, and a number of demographic
factors. Between 10 and 15 University of Zimbabwe students
worked each year in each village as enumerators, after attending
a day-long training session. Enumerators attempted to interview
people who had attended the most recent workshop and a
random sample of additional households in the community.
Each enumerator interviewed between three and five farmers
per day in the local language, with a total of between 60 and 80
surveys collected in each village in each year.

The survey elicited information on demographic variables,
typical farm management practices and harvests for that farm,
farming management practices and harvests for the prior year,
access to forecast information, and the ways in which the forecast
information had influenced their farm management practices
the prior year. Yield information was broken down into area
planted and harvest quantities for each crop and variety they
planted: short-, medium-, and long-season maize; sorghum; and
millet. Farmers also provided estimates of their historical aver-
age yields in typical good (adequate rainfall) and bad (drought)

Fig. 1. Map of Zimbabwe showing approximate boundaries of natural
regions, study sites, and the two largest cities, Harare and Bulawayo. The
natural regions refer to labels used by the Zimbabwe Agricultural Extension
Service to denote areas of homogeneous crop suitability, based on annual
rainfall, duration of growing season, and temperature, with natural region
one receiving the most rainfall. Most subsistence farming in Zimbabwe takes
place in natural regions three and four.
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years. At the end of the survey, after farmers had provided
information on yields, they answered questions related to fore-
cast use. Farmers were informed that their individual responses
would be kept confidential and would not in any way affect local
decisions, including the distribution of food aid. We collected a
total of 578 surveys over the 2 years. After University of
Zimbabwe students had entered data into a statistical software
package, we evaluated redundant and overlapping questions. We
dropped variable values that contained inconsistent answers as
well as outliers where estimated yields fell outside a plausible
range for the particular community and variety planted.

Results
In 2002–2003, there was a mild El Niño in place, and both the
OND and JFM forecasts called for 35–40-25 (35% chance of
below-normal, 40% chance of normal, and 25% chance of
above-normal rainfall) for the four villages. The conditions
during the season, in terms of total quantities and temporal
distribution, turned out to be poor. Actual OND rainfall for a
region containing the two western villages was �65% of average
and for a region containing the two eastern villages, 65–74% of
average (28). In both regions, this fell into the below-normal
category. Actual JFM rainfall for a region containing three of the
villages (Mkoka, Mhakwe, and Tiya) was 75–125% of average,
within the normal range, although much of this fell during a
single tropical cyclone (28). Actual JFM rainfall in a region
containing Mafa, which just missed the northwestern edge of the
cyclone, was 65–75% of average, in the below-normal range (28).
In 2003–2004, there were neutral ENSO conditions, with an
OND forecast of 25–45-30 and a JFM forecast of 30–40-30 for
the four villages. The conditions during the year turned out to be
average to good. Actual OND rainfall for all villages was
75–125% of average, in the normal range (29). Actual JFM
rainfall for the two eastern villages was 75–125% of average,
whereas for the two western villages, it was 125–150% of average
(29). All of these were in the normal range.

Three hundred and sixty-seven respondents had received
information about what to expect for the coming rainy season,
via a workshop or another medium, and of these 57% reported
making different decisions because of the seasonal climate
forecast. The two main ways that farmers reported using the
forecast was by altering the time of planting (50% of farmers who
reported making a change) or by planting different varieties of
crops (40%). In 2002, many farmers planted a greater proportion
of their fields with short-season varieties and planted them early,
to take advantage of November rains and give themselves the
opportunity to replant. In 2003, many farmers staggered their
planting times and planted a greater proportion of their land. No
personal demographic variables, including farmer training, ed-
ucation, and household assets, showed a significant relationship
with reported changes made in response to the forecasts, and we
omitted them from subsequent analyses.

We had identified farms in the survey instrument by first and
last name of the farmer answering the survey. In the first year
of the survey, unfortunately, almost all of the enumerators
wrote the farmer’s first initial, rather than the full first name.
This led to confusion where several families shared the same
last name, as was common. Based on an analysis of names,
initials, and farm size, it appears that �10% of the sample
could ref lect households interviewed in both 2003 and 2004.
However, this could mean that 2 years’ data are not indepen-
dent, while preventing us from treating them as panel data. In
the following analyses, then, we examine not only the com-
bined data but also each year in the aggregate. Individual
years’ data would be unaffected by the lack of independence
between the 2 years.

Did farmers have a larger harvest than they otherwise would
have had when they changed their decisions in response to the

forecasts? We constructed a relative harvest index (RHI) that
expresses the farmers’ harvest relative to their historical baseline
range:

RHIi � �Ai � Bi���Gi � Bi�,

where (Ai � Bi) is the difference for farmer i between the actual
harvest in the current year and that of a typical bad season, and
(Gi � Bi) is the range between typical good and bad seasons. RHI
takes on a value of 0 if the farmer’s actual harvest matched the
estimate of a typical bad season harvest and 1 if the farmer’s
actual harvest matched the estimate of a typical good season
harvest. RHI can also take on values outside of this range, if the
actual harvest falls outside of the estimated range of bad to good
years’ harvest.

The RHI corrects for farmers’ biases in estimating quanti-
ties, because it is a unitless metric and allows one to compare
farms with very different average levels of productivity. How-
ever, it does introduce the possibility of measurement error,
because it requires farmers to estimate three harvest quantities
(actual, good, and bad) for each of the seed varieties they
typically plant, as well as strategic behavior. We were con-
cerned that some farmers might have strategically reported a
combination of a very low actual harvest in combination with
a high bad harvest estimate; they may have incorrectly believed
this would portray the current year as catastrophic to secure
food aid, even though we informed them that all household
identifiers would remain confidential. We dropped the three
outliers in this direction, where farmers reported a bad harvest
to be more than two-thirds of a good harvest, indicating an
overestimate of the bad harvests, with an actual harvest
reported to be below this range. We also dropped all obser-
vations where bad harvest estimates met or exceeded good
harvest estimates, as an additional filter for measurement
error. To test for any potential bias in the RHI arising from
farmers’ poor estimation of their typical bad or good harvests,
we examined the correlation with the reported changing of
decisions (useforecast); there were no significant correlations
between the useforecast and either reported bad harvests
(Student’s t � 0.562, P � 0.574), good harvests (Student’s t �
0.997, P � 0.319), or the range between bad and good
(Student’s t � 1.06, P � 0.288).

Model 1 in Table 1 shows the results of an ordinary
least-squares regression, with RHI as the dependent variable.
In addition to a dummy variable for useforecast, we included

Table 1. Regression coefficients for value of forecast use and
workshop attendance

Explanatory
variable

Model 1,
both years

Model 2,
2002–2003

Model 3,
2003–2004

Useforecast 0.094** 0.036 0.187*
(0.046) (0.039) (0.099)

Year 2004 0.301***
(0.035)

Mhakwe �0.113* �0.081 �0.174
(0.051) (0.061) (0.117)

Tiya 0.104* 0.101* 0.087*
(0.060) (0.061) (0.109)

Mafa 0.030 0.008 0.076
(0.053) (0.049) (0.115)

Constant 0.044 0.071 0.330***
(0.040) (0.048) (0.074)

n 495 255 240
R2 0.157 0.042 0.068

Coefficient significance: *, 0.10; **, 0.05; and ***, 0.01 (standard errors in
parentheses).
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dummy variables for year and location; the location variables
were significant in the aggregate [F (3, 489) � 7.97, P � 0.001].
Because the variance in the RHI was correlated with location
and year [Cook–Weisberg test for heteroskedasticity, �2(1) �
36.24, P � 0.001], we generated bias-corrected robust standard
errors. The coefficient for the useforecast variable is positive
and significantly different from zero (P � 0.039), suggesting
that farmers using the forecast had higher harvests relative to
their historical amounts, compared with farmers not using the
forecast. The coefficient for year 2004 is also significantly
different from zero (P � 0.01), indicating that farmers did
significantly better in 2003–2004 than in 2002–2003, compared
with their normal range of harvests. Model 1 as a whole is a
significant predictor of the RHI [F (5, 489) � 17.71, P � 0.001].
However, the R2 is only 0.157, meaning that the model predicts
only a small proportion of the variance in the RHI. Model 2
in Table 1 is an ordinary least-squares regression limited to the
2002–2003 year. It shows no significant effect of forecast use
on relative harvest, and indeed the regression model itself is
only marginally significant [F (4, 250) � 2.29, P � 0.061].
Model 3, for the 2003–2004 year, shows a marginally significant
effect of forecast use (P � 0.061), and the model as a whole
is significant [F (4, 235) � 4.53, P � 0.002]. The lower R2 in
the latter two models than in Model 1 ref lects the omission of
the year covariate, which is the most important predictor of
harvest. Fig. 2, which shows average values of the RHI in each
year according to whether farmers reported using the forecast,
illustrates these results. There was a small but insignificant
difference in 2002–2003 and a larger and marginally significant
difference in 2003–2004.

The RHI is not normally distributed (Shapiro–Wilk W test, z �
9.49, P � 0.001). Although this does not invalidate the ordinary
least-squares coefficient estimates, it does require other tests to
confirm their statistical significance. The difference in means
test should provide robust confidence levels, given the sample
size much larger than 30. The difference was not significant in
2002–2003 (Student’s t � 0.65, P � 0.52) but was significant in
2003–2004 (Student’s t � 2.18, P � 0.03). The nonparametric and
more conservative Mann–Whitney test for the 2003–2004 data
showed marginal significance (z � 1.70, P � 0.089).

To examine the effects of the workshops, we first used the
relationship between reported good harvests and workshop

attendance to verify that the sample of workshop attendees was
unbiased. The two communities where an agricultural extension
service (AREX) officer invited workshop attendees were prob-
lematic, either because the AREX office did in fact invite a
biased sample, or because a biased sample responded to the
invitation. Workshop attendees reported significantly higher
good harvests in Mhakwe (Student’s t � 2.77, P � 0.01) and Tiya
(Student’s t � 2.06, P � 0.04), suggesting that the sample of
workshop participants was weighted toward the more successful
farmers. In Mkoka, those not attending the workshop reported
good harvests 28% higher than those attending, but the effect
was not significant (Student’s t � 1.02, P � 0.31). In Mafa, those
not attending the workshops reported good harvests 27% lower
than those attending, but this effect was also not significant
(Student’s t � 1.56, P � 0.12). We thus analyzed just these two
communities to examine the effect of workshop participation on
forecast use. To gain a clearer picture of the effect of workshop
attendance, we consider only those respondents who learned of
the forecast, either at a workshop or through another medium.

Fig. 3 shows that in both communities, people attending the
workshops were significantly more likely to report using the
forecasts [Mafa �2(1) � 4.12, P � 0.04; Mkoka �2(1) � 14.9, P �
0.001]. Fig. 4 aggregates the two communities but examines each
year separately. In 2002–2003, no farmers who had not attended
a workshop made a different decision because of the workshop,
whereas almost two-thirds of the farmers attending a workshop
did so. The main difference appears to be that farmers who had
attended the workshop learned they could respond to the
forecast by planting earlier or staggering their planting; farmers
not attending the workshop responded to the poor forecast by
continuing to plant the most drought-tolerant crops, i.e., making
no change. In 2003–2004, there was not a significant difference
between those attending the workshop and those not [�2(1) �
1.17, P � 0.28].

Discussion
There are several limitations of the study design. First, we do
not draw a clear connection between the management decision
made in response to the forecast and any resulting change in
yields, showing which management decisions were most effec-

Fig. 2. Average values of the RHI within groups divided by year and reported
use of forecast information. The gray bars show those who could list a specific
change made on account of the forecast. Error bars reflect one standard error
within each group.

Fig. 3. Proportions reporting using forecast information within groups
divided by location and workshop attendance. The white bars are limited to
the subsample that reported hearing the forecast in that year through a
medium other than the workshop.
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tive. Ideally, one would want to track carefully the manage-
ment decisions that farmers made and validate reported
differences in yield with a crop model, incorporating all
decisions in fine detail. In practice, we were not able to do this,
given our choice to use a larger sample of farmers, letting them
make their own decisions, with our inf luence limited to a short
workshop. Second, our reliance on farmers’ estimated har-
vests, both in the current year of the survey and in past years,
has most likely introduced measurement error in the depen-
dent variable, RHI. As long as it is unbiased, this error will not
lead to biased estimates of the relationship between RHI and
the independent variables, but it could increase the observed
variance in these estimates. In the case of the regression
models in Table 1, removing the measurement error could lead
to greater significance of the coefficient estimates. However,
measurement error could also have led us to accept the
workshops as unbiased samples of farmers in Mafa and Mkoka.
It should be noted that any potential bias in the sample of
workshop attendees goes in the opposite directions between
Mafa and Mkoka, whereas the observed effect on forecast use
is the same. Combined with the lack of association between
good and bad harvests and reported forecast use, this supports
the finding of workshop importance even in the face of a
potential biased sample within the two separate communities.
To remove the measurement error, we would have needed
longitudinal data, showing what survey respondents’ harvests
had been over many past years. Such data do not exist at the
farmer level. A third limitation derives from the ambiguity of
farmer identification in the survey instrument. To draw robust
conclusions over multiple years’ data, it would be important to
identify farms and farmers by location, such as by equipping
enumerators with global positioning system transceivers to
mark exact coordinates. The relationship between forecast use
and RHI found for the 2003–2004 year, as seen in Table 1,
Model 3, and Fig. 2, is not affected by this potential problem.

Notwithstanding these limitations, the results from Mafa
and Mkoka offer quantitative evidence that a more carefully
designed communication strategy enhances people’s willing-
ness to change their decisions in response to information.
These results are consistent with the conclusions drawn from
several case studies, in which people have expressed a desire

for more participatory forecast communication (12). This
finding is important, because it suggests that the added
expense of the more interactive communication process may
be worthwhile, if policy makers want to increase farmers’ use
of new information. This has relevance not only for the
application of climate forecasts but also for other types of
technical information related to sustainable development and
climate-change adaptation.

Second, these results offer quantitative evidence that use of
climate forecast information alone can benefit resource-
constrained developing country farmers. This is consistent
with the evidence from Brazil in 1991–1992, but here it can be
seen in the absence of a program to distribute, free of charge,
appropriate seed varieties. The use of forecasts was associated
with an increase in harvests, compared with farmers’ typical
range of harvests, of 9.4% across the 2 years and 18.7% in the
2003–2004 season. The significance of the second of these
estimates is not affected by any problems caused by repeated
sampling of the same farmers and has been validated with a
nonparametric test. Although the difference is small compared
with the year-to-year variability in harvests due to climate and
other factors that we were not able to measure, it suggests that
climate forecasts are of value to subsistence farmers.

It is an interesting feature of the data that the observed
effect of the use of the forecasts was both greater in magnitude
and more significant in the second year of the study. This is
again consistent with prior evidence from Zimbabwe, which
suggested that forecast value may be higher in non-El Niño
years. Although it may be in drought years that forecasts are
of the greatest value to national-level planners attempting to
prepare for food insecurity, it appears that forecasts benefit
farmers the most when they give them the opportunity to take
advantage of good conditions. At the same time, Fig. 4 reveals
that the effect of the workshops may have been greater in the
first year, when drought was predicted. This is again consistent
with the prior evidence, which suggested that farmers already
manage risk, planting short-season varieties out of concern for
likely drought. At least in dry areas, such as Mafa and Mkoka,
a forecast lacking specific suggestions for change would not
cause farmers to alter their behavior. A forecast workshop,
however, can begin to identify smaller changes farmers can
make, changes which may have very little effect on yields. By
contrast, a forecast of better rains would have more obvious
implications for these farmers, whether they heard the forecast
over the radio or in a workshop. Such a forecast would be more
valuable to farmers, whereas the added value of the workshop
itself would be less.

These results represent a quantitative estimate of value to
individual farmers obtained from using forecast information to
make different decisions. They answer the question: Are
farmers who use the forecasts better off than they otherwise
would have been? Given that these farmers must survive from
the crops they grow, the answer appears to be ‘‘yes.’’ At the
same time, however, the results show that climate forecasts go
only so far to improve farmers’ livelihoods; forecasts may be
less valuable to farmers than other potential interventions,
such as better access to credit to purchase inputs or install
irrigation, or lower prices for fertilizer. The amount of variance
explained by the forecasts in any one year is small, and the
difference between a good and a bad year is far more
important.
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Benclaire Masamba for assistance in the field and Emma Archer,
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Fig. 4. Proportions reporting using forecast information within groups
divided by year and workshop attendance. The sample is limited to the
communities of Mafa and Mkoka. The white bars are limited to the subsample
that reported hearing the forecast in that year through a medium other than
the workshop.
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